Paper
Efficient Global 2D-3D Matching for Camera Localization in a Large-Scale 3D Map
Motivation
large-scale
problem lead to ambiguous matches- 3D points can be visually similar or even identical (repeated structure)
- ambiguous matches are almost inevitable
local search
will only obtain sub-optimal solution- take account of similarities between 2D-3D matches
Proposed scheme
I have some questions about this paper
- “Covisibility” is the link between each two
points
orpoint clouds
in the global map?- 雖然ref都是定義任兩點之間,但我認為是任兩點雲之間,我的原因如下:
- 可能點的數量大到無法將Cij寫成矩陣形式?
- p(t + 1) = αCp(t) + (1 − α)q。這個式子想要做的事情,應該是想辦法把目前的feature points分到某一個global submodels中。(比較符合Introduction提到結構相似產生多個歧義的matching pairs情境。)
- 因為從點雲變成點,C裡的值之間的差距會變的很小,且每個值應該都會很小。(1 − α)q這項就會dominate,單靠q值得到最後的評分。但q值是跟matching pairs的分布有很大的關係,越多的features或越相近的features連結到這個點,該點q值就會變大。因此這樣又回到問題本身,也就無法解決歧義的問題。